I/O-Efficient Algorithms for Computing Contours on a Terrain

نویسندگان

  • Pankaj K. Agarwal
  • Lars Arge
  • Thomas Mølhave
  • Bardia Sadri
چکیده

A terrain M is the graph of a bivariate function. We assume that M is represented as a triangulated surface with N vertices. A contour (or isoline) of M is a connected component of a level set of M. Generically, each contour is a closed polygonal curve; at “critical” levels these curves may touch each other or collapse to a point. We present I/Oefficient algorithms for the following two problems related to computing contours of M: (i) Given a sequence `1 < · · · < `s of real numbers, we present an I/O-optimal algorithm that reports all contours of M at heights `1, . . . , `s using O(sort(N) + T/B) I/Os, where T is the total number edges in the output contours, B is the “block size,” and sort(N) is the number of I/Os needed to sort N elements. The algorithm uses O(N/B) disk blocks. Each contour is generated individually with its composing segments sorted in clockwise or counterclockwise order. Moreover, our algorithm generates information on how the contours are nested. (ii) We can preprocess M, using O(sort(N)) I/Os, into a linear-size data structure so that all contours at a given height can be reported using O(logB N + T/B) I/Os, where T is the output size. Each contour is generated individually with its composing segments sorted in clockwise or counterclockwise order. ∗The first and fourth authors are supported by NSF under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01, by a DOE grant OEGP200A070505, and by a grant from the U.S.–Israel Binational Science Foundation. The second and third authors are supported in part by the US Army Research Office through grant W911NF-04-01-0278, by an Ole Roemer Scholarship from the Danish National Science Research Council, a NABIIT grant from the Danish Strategic Research Council, and by the Danish National Research Foundation, and in part by MADALGO: Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SCG’08, June 9–11, 2008, College Park, Maryland, USA. Copyright 2008 ACM 978-1-60558-071-5/08/04 ...$5.00.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvised Interpolation of Contour Lines Using Spider Weaving Approach

Geographically contours are virtual lines drawn across the terrain to join points that are at same elevation from certain reference point. Contours are essential morphological features that are used along with the associated elevation as basis for generating Terrain Model or Digital Elevation Model for the area of interest. These lines are represented at different scales depending upon the scal...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

I/O-Efficient Hierarchical Watershed Decomposition of Grid Terrains Models

Recent progress in remote sensing has made massive amounts of high resolution terrain data readily available. Often the data is distributed as regular grid terrain models where each grid cell is associated with a height. When terrain analysis applications process such massive terrain models, data movement between main memory and slow disk (I/O), rather than CPU time, often becomes the performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008